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Motivations
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Q?/s = = fixed

are expressed as a 1/Q2 “twist” expansion do = Z Jp ®do + 0(1/Q%)

P
collinear factorization: parton content of proton described by k;-integrated distributions

sufficient approximation for most high-p; processes

« cross sections in the Bjorken limit of QCD

TMD factorization: involves transverse-momentum-dependent (TMD) distributions
needed in particular cases, TMD-pdfs are process dependent
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P
collinear factorization: parton content of proton described by k;-integrated distributions

sufficient approximation for most high-p; processes

« cross sections in the Bjorken limit of QCD

TMD factorization: involves transverse-momentum-dependent (TMD) distributions
needed in particular cases, TMD-pdfs are process dependent

s—oo, x—0

« cross sections in the Regge limit of QCD ,
rs = QQ° fixed

are expressed as a 1/s “eikonal” do = Z fp®do+ O(1/s)
p

expansion

k; factorization: parton content described by unintegrated parton distributions (u-pdfs)

we would like to understand: - the connection between TMD & k- factorizations
- how TMD-pdfs and u-pdfs are related



Conclusions from talk 6 years ago

« considering the SIDIS process, we have shown that

TMD factorization (valid at large Q?2)

and k; factorization (valid at small x) CM, Xiao and Yuan {2009)

are consistent with each other in the overlapping domain of validity

 the SIDIS measurement provides direct access to the transverse
momentum distribution of partons

the saturation regime, characterized by Q§ ~ /\éCD (A/x)1/3,
can be easily investigated

even if Q2 is much bigger than Q.2,
the saturation regime will be important when P} ~ Q2

« this is an encouraging start, but now we would like to understand the
relations between TMD and k; factorization breaking

k; factorization breaking at small x is no obstacle, so perhaps we can
learn from the CGC how to work around the TMD factorization breaking
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« considering the SIDIS process, we have shown that

TMD factorization (valid at large Q?2)

and k; factorization (valid at small x) CM, Xiao and Yuan {2009)

are consistent with each other in the overlapping domain of validity

 the SIDIS measurement provides direct access to the transverse
momentum distribution of partons

the saturation regime, characterized by Q§ ~ /\éCD (A/a;)l/?’,
can be easily investigated

even if Q2 is much bigger than Q.2,
the saturation regime will be important when P} ~ Q2

« this is an encouraging start, but now we would like to understand the
relations between TMD and k; factorization breaking

k; factorization breaking at small x is no obstacle, so perhaps we can
learn from the CGC how to work around the TMD factorization breaking

——> study process where factorization breaks: di-jets
(and forward production to have small x)



Di-jet final-state kinematics
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central rapidities probe moderate x
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Di-jet final-state kinematics

N Y2 - -
final state : Kk, ¥, K&y, ¥, L kel+ke ke +k, e

p \/g Xy = \/E

scanning the wave functions:

] x,~x,<1
. e central rapidities probe moderate x
\ X, Increases | x, ~ unchanged
. ] . xp ~ 1, )CA < 1
o — et forward/central doesn’t probe much smaller x

X, ~ unchanged | x, decreases

forward rapidities probe small x



Color Glass Condensate (CGC)
calculation of forward di-jets
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k b: quark in the amplitude
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Fourier transform k. and q.
collinear factorization of quark density in deuteron into transverse coordinates

A
- ™

d?x  d?x' d?b 420 . ’ . /
—_ C N , 2 / Zk?L.(X—X) qu.(b —b
Pho, dypdPqrdyy  CSCFNe Ta1lTa17) | 530 2 (2my2 (22 ¢

dO.dAu—>qu

2 4 3
ST (2, x—b, X —b')| {Séggg[b, x, b/, 24] — S$[b, x, b/ +2(X' ~b'); 2.4]

'
pQCD q — qg _S(ggg [b+Z(X—b),X/, blv ZCA] + Ség) [b+Z(X—b), b,—|—Z(X,—b/>; CIZA]}
wavefunction
|k |eYk

[k Llevk + gy |eve



Saturation calculation

CM (2007)

W e q P Ry I L wmal
' ’ 2 b: quark in the amplitude
X: gluon in the amplitude

b’: quark in the conj. amplitude

x’: gluon in the conj. amplitude

Fourier transform k. and q.
collinear factorization of quark density in deuteron into transverse coordinates

A
s I
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wavefunction —
interaction with target nucleus

|k |eYk

= oL [ebe + gL [V n-point functions that resums the powers of g5 A and the powers of ag In(1/x,)
€ 1




Scattering on the dense target

» this is described by Wilson lines

— - trca(zt
scattering of a quark: Wrlal(x) = Pexp {ng/dx Tacl ’x)}

& dependence kept implicit in the following
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in the CGC framework, any cross-section is determined by colorless combinations of
Wilson lines S[x] , averaged over the CGC wave function <S> =fDa ‘q) [a]‘zS[a]




Scattering on the dense target

» this is described by Wilson lines

— - trca(zt
scattering of a quark: Wrlal(x) = Pexp {ng/dx Tacl ’X)}

& dependence kept implicit in the following

in the CGC framework, any cross-section is determined by colorless combinations of
Wilson lines S[x] , averaged over the CGC wave function <S> =fDa ‘q) [a]‘zS[a]

» the 2-point function or dipole amplitude

the g dipole scattering amplitude: TAxy)=1- ]\1, Tr(W; (y)Wi(x))

c

(Tyg(X,¥))z or (Tyz(r,b))x X : quark transverse coordinate

o _ _ y : antiquark transverse coordinate
this is the most common Wilson-line average



2- 4- and 6-point functions

« coming back to the double-inclusive cross-section

the scattering off the CGC is expressed through the following correlators of Wilson lines:

if the gluon is emitted before the interaction, four partons scatter off the CGC

S5 (b, %, b/, X' 24) = A (We®YWE®)TTe) WA OWEeOI)

if the gluon is emitted after the interaction, only the quarks interact with the CGC
(2) /. _ 1 T (h/
Sgg (0,0 22) = - (Tr (Wr(®Wi()))

interference terms, the gluon interacts in the amplitude only (or c.c. amplitude only)

S0 b .4) = e (Tr (WO T W (0)7) W G0)

LA
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The large-Nc limit

in the large Nc limit, everything is expressed in terms
of dipoles and quadrupoles

* in the large-Nc limit, the cross section is obtained from

1 1
SO = L (W), and S = L (e,

(this is true for an arbitrary number of final-state particles measured)
Dominguez, CM, Stasto and Xiao (2013)

A



The large-Nc limit

in the large Nc limit, everything is expressed in terms
of dipoles and quadrupoles

AY

* in the large-Nc limit, the cross section is obtained from
1 1
4) _ T T 2) _ & T
SW = N (Tr(WWiW,WY))  and S@) = ¥ (Tr(WxW{))
(this is true for an arbitrary number of final-state particles measured)
Dominguez, CM, Stasto and Xiao (2013)

A

* the 2-point function is fully constrained by e+A DIS and d+Au
single hadron data they are obtained from the N(z,r)=1- g(2)

dipole scattering amplitude r = dipole size



Connections with
high-energy factorization
and TMD factorization



The linear regime
|p1t‘7 ‘th‘a ‘kt‘ > QS

« taking all involved momenta >> Qs, the CGC formula reduces to
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a,c,d

this is the so-called high-energy factorization (HEF) formula
e.g. Kutak and Sapeta (2012)

xify/p(x1,4?) — collinear PDF in p, suitable for x; ~ 1
(Mg —ca|®> — matrix element with off-shell incoming gluon

]—“g/A(XQ, k;) — unintegrated gluon PDF in A, suitable for x, < 1



The linear regime
|p1t‘7 ‘th‘a ‘kt‘ > QS

« taking all involved momenta >> Qs, the CGC formula reduces to

do.pA—)dijets—I—X 2 1

(87
— Z xlfa/p(wl X ) ‘Mag —>cd‘ g/A<x27k2)1_'_5 P .

dy1dyed?p11d?pa; m(x1228)2

a,c,d

this is the so-called high-energy factorization (HEF) formula
e.g. Kutak and Sapeta (2012)

le;,/p(xl,,uz) — collinear PDF in p, suitable for x; ~ 1
(Mg —ca|®> — matrix element with off-shell incoming gluon
Fg/a(x2, ki) = unintegrated gluon PDF in A, suitable for x, <1

the unintegrated gluon density involved is also the also involved in deep
inelastic scattering, it is related to the dipole scattering amplitude A (z, )

]:g/A(x k as 27-‘- /d2 /d27" e—zk rvz N($ ?“)




Recall dilute-dense kinematics

« large-x projectile (proton) on small-x target (proton or nucleus)

5= (p+k)
t=(p—p)’
o= (p1 — p)°
Incoming partons’ energy fractions:
1
X1 = (‘Plt|ey1 + ‘P2t|ey2) y1,y2>>0 x3 ~ 1
vE =
x2. = = (|piele™ + |pacle) o < 1

Gluon's transverse momentum (pi¢, po: imbalance):

‘kt|2 = |p1t + P2t|2 = ‘Plt|2 + |P2t‘2 + 2|p1t|| p2t| cos A¢



Recall dilute-dense kinematics

« large-x projectile (proton) on small-x target (proton or nucleus)

5= (p+k)
t=(p—p)’
o= (p1 — p)°
Incoming partons’ energy fractions:
1
X1 = (‘Plt|ey1 + ‘P2t|ey2) y1,y2>>0 x3 ~ 1
vE =
x2. = = (|piele™ + |pacle) o < 1

Gluon's transverse momentum (pi¢, po: imbalance):

‘kt|2 = |p1t + P2t|2 = ‘Plt|2 + |P2t‘2 + 2|p1t|| p2t| cos A¢

e several momentum scales in the process
p1t], [p2t| > Qs however, |k] can be small or large



The back-to-back regime
P1tls [P2ae] > [ke|, Qs

« a factorization can be established in the small x limit, for nearly

back-to-back di-jets Dominguez, CM, Xiao and Yuan (2011)

dO.pA—>dijets—|—X
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a,c,d

but it involves six unintegrated gluon distributions oY (z2,k2) (2 per channel)

ag—cd

and their associated hard matrix elements Kég)%cd are on-shell (i.e. k,= 0)

this is the so-called Transverse Momentum Dependent (TMD) factorization formula
e.g. Bomhof, Mulders and Pijiman (2006)



The back-to-back regime
P1tls [P2ae] > [ke|, Qs

« a factorization can be established in the small x limit, for nearly

back-to-back di-jets Dominguez, CM, Xiao and Yuan (2011)

dO.pA—>dijets—|—X

OIENG 1
d2Ptd2ktdy1dy2 (X1X25)2 Z lea/P(Xl X )Z Kag—>cd ag—cd q + 0y

a,c,d

but it involves six unintegrated gluon distributions oY (z2,k2) (2 per channel)

ag—cd

and their associated hard matrix elements Kég)%cd are on-shell (i.e. k,= 0)

this is the so-called Transverse Momentum Dependent (TMD) factorization formula
e.g. Bomhof, Mulders and Pijlman (2006)

« only valid in asymmetric situations

* L
Collins and Qiu (2007), Xiao and Yuan (2010) o, | 0_."?}.

does not apply with unintegrated parton densities for both colliding projectiles



TMD gluon distributions

» the naive operator definition is not gauge-invariant
d¢t d?€,

Forn(xo, kp) "€ 2
a2, ) (27)3p,

eiepy & —ike-&, <A|Tr [Fi_ (§+7£t) F'- (O)} |A>




TMD gluon distributions

» the naive operator definition is not gauge-invariant

d£+ d2€t eiXQpXE'
(27)°pa

« atheoretically consistent definition requires to include more diagrams

Fon(x2, ke) "¢ 2 b (AITE [FIT (€1, €,) FI(0)] |A)

+  similar diagrams with 2,3, ... gluon exchanges

They all contribute at leading power and need to be resummed.

this is done by including gauge links in the operator definition



Process-dependent TMDs

» the proper operator definition(s) some gauge link pexp [—ig/ﬂ dnf A*(n) T?
N O
Fanlo, k) =2 [0S Eeemmn€ it (AT [F1~ (67.,6,) Ueo P~ (0)] 14)
(2m)3pa

> Uo,pg) renders gluon distribution gauge invariant

however, the precise structure of the gauge links is process-dependent,
since it is determined by the color structure of the hard process H
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since it is determined by the color structure of the hard process H

* in general, several gluon distributions are needed already for a
single process n,

example for the qg — Qg channel

each diagram generates
a different gluon distribution




Process-dependent TMDs

» the proper operator definition(s) some gauge link pexp [—ig/ﬂ dnf A*(n) T?

S

—|—d2 . .
Fanlio ) =2 [ S5t et (AT [F (€1,€,) U 0)]14)

> Uo,pg) renders gluon distribution gauge invariant

however, the precise structure of the gauge links is process-dependent,
since it is determined by the color structure of the hard process H

* in general, several gluon distributions are needed already for a
single process n,

example for the qg — Qg channel

each diagram generates
a different gluon distribution

in the large k; limit, the process dependence ’
of the gauge links disappears (like for the integrated gluon distribution) up to
O (Qi/kf) corrections, and a single gluon distribution is sufficient




The six TMD gluon distributions

« correspond to a different gauge-link structure

2
df+d éteixzp;§+—ikt-£t

Fara(x2; ke) = 2/(%)3% (AlITr [F= (67, &) UeaF'™ (0)] 1A)

several paths are possible for the gauge links

* when integrated, they all coincide

2

K )
/ Pl O (2, k2) = 22 f (w2, 1)



The six TMD gluon distributions

« correspond to a different gauge-link structure

2
df+d éteipr;§+—ikt-gt

Fara(x2; ke) = 2/(27T)3p; (AlITr [F= (67, &) UeaF'™ (0)] 1A)

several paths are possible for the gauge links

* when integrated, they all coincide

2

K )
/ Pl O (2, k2) = 22 f (w2, 1)

* they are independent and in general they all should be extracted

from data
only one of them has the probabilistic interpretion

of the number density of gluons at small x,

* in the Color Glass Condensate, (using some approximations),
one can obtain relations between them



Some numerical results

the five gluon TMDs which survive in the large Nc limit
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Combining both limits into a
common factorization formula



Improved TMD factorization formula
pit], [p2t] > Qs

.. 2
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a,c,d i=1

practical for for an arbitrary |k, value

the new off-shell hard factors Kc(ti)*%cd can be computed from
Feynman diagrams, or from Color-ordered amplitudes
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practical for for an arbitrary |k, value

the new off-shell hard factors Kc(bi)*%cd can be computed from
Feynman diagrams, or from Color-ordered amplitudes

* in the back-to-back limit ]pu\, \p2t| > !kt|,Qs

K(i)* d 7 Kéig)écd and the TMD formula is recovered



Improved TMD factorization formula
pit], [p2t] > Qs

do.pA—>d13ets—|—X 2 () 1
o) R
d2Ptd2ktdy1dy2 (X1X25 2 ;Xl a/P X1, ,u IE; ag*—cd " ag—cd 1 +5cd
practical for for an arbitrary |k, value
the new off-shell hard factors K(gz)*_md can be computed from

Feynman diagrams, or from Color-ordered amplitudes
* in the back-to-back limit ]pu\, \p2t| > ]ktl,Qs
K(i)* d 7 Ké}ig)%cd and the TMD formula is recovered

+ in the dilute limit |p1t!,!pzt\,\kt! > Qs then ©)_ , — Fuyg/m

and since Z Kc(fg) e oqg = | Mag —>cd| the HEF formula is recovered



The six 2-to-2 off-shell hard factors

they can be computed in two independent ways:

using Feynman diagrams, and using color-ordered amplitudes

1 1 2
—4 -4 —4 A o —4 -4 —4 A 77 —a
K(i) N, <s +t —|—u>(uu—|—tt) _Nc (3 +t —|—u>(uu—|—tt—ss)
99"299 | Cp Hui58 20 58
722 0 -2\ (—~ | I 72 0 92\ [(—~ 7 —=a
< 1 (P ) (wa+ ) (P ) (a7 - )
99"~ | 9N, 35t AN2Cp ssta
o) T (5 + u?) . 55—t Cps (5 + u?)
49°—49 21t s N2 wi N. Tt

A

A

§,t,0 are the Mandelstam variables and §,t,u = §,%, u(k; = 0)



Conclusions |

at leading order, for inclusive enough processes (like SIDIS) where
factorization is “simple”:

TMD factorization (valid at large Q?) and k; factorization (valid at small x)

are consistent with each other in the overlapping domain of validity

at leading order, for processes where factorization is more involved
(like forward di-jets):

TMD factorization (with several sub-process-dependent TMDs) and
saturation calculations (which no more consist of k,-factorized expressions)

are consistent with each other in the overlapping domain of validity

the breaking of k- factorization at small-x is expected, understood,
and is not a probTem In saturation calculations:

a more involved factorization is used, with more a appropriate description
of the parton content of the proton (in terms of classical fields)




Conclusions ||

some features of saturation calculations can be imported into the
TMD framework in order to improve it

for instance, in the case of forward di-jet production:

several gluon TMDs (as opposed to a single one) are crucial in the TMD
factorization regime |p1¢|, |pat| > |k¢|, Qs which corresponds to nearly
back-to-back jets, but the off-shellness of the small-x gluon is missing

this off-shellness is crucial to recover the HEF regime
‘plt’, !pzt], ]k’t\ > QS and can be restored

also, the different TMDs can be related to each other at small-x

one can use information extracted from one process to predict another

the next step now is to connect the x evolution of u-pdfs and the

scale evolution of TMD-pdfs ___s Bowen Xiao’s talk now




